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Abstract

Optimal decision-making in social settings is often based on forecasts from
time series (TS) data. Recently, several approaches using deep neural net-
works (DNNs) such as recurrent neural networks (RNNs) have been intro-
duced for TS forecasting and have shown promising results. However, the ap-
plicability of these approaches is being questioned for TS settings where there
is a lack of quality training data and where the T'S to forecast exhibit complex
behaviors. Examples of such settings include financial T'S forecasting, where
producing accurate and consistent long-term forecasts is notoriously difficult.
In this work, we investigate whether DNN-based models can be used to fore-
cast these TS conjointly by learning a joint representation of the series instead
of computing the forecast from the raw time-series representations. To this
end, we make use of the dynamic factor graph (DFG) to build a multivariate
autoregressive model. We investigate a common limitation of RNNs that rely
on the DFG framework and propose a novel variable-length attention-based
mechanism (ACTM) to address it. With ACTM, it is possible to vary the
autoregressive order of a TS model over time and model a larger set of prob-
ability distributions than with previous approaches. Using this mechanism,
we propose a self-supervised DNN architecture for multivariate TS forecast-
ing that allows us to learn and take advantage of the relationships between
them. We test our model on two datasets covering 19 years of investment
fund activities. Our experimental results show that the proposed approach
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significantly outperforms typical DNN-based and statistical models at fore-
casting the 21-day price trajectory. We point out how improving forecasting
accuracy and knowing which forecaster to use can improve the excess return
of autonomous trading strategies.

Keywords: Time Series Forecasting, Semi-supervised Learning, Dynamic
Factor Graphs, Neural Networks

1. Introduction

In recent decades, DNNs have improved TS forecast accuracy in various
social settings [I]. Besides their ability to handle non-linear processes, they
provide a cost-effective approach for uncovering relations between T'S. DNNs
are based on the dynamic factor graph (DFG) framework [2, 3], which is
a particular case of a factor graph [4] in which the template method [4] is
applied. Specifically, a DNN-based model assumes that the factors of a DFG
are individual neural networks (NN) that enforce a hierarchical structure for
pattern detectors throughout its hidden layers [5]. Under this framework,
the DNN-based model learns complex probability distributions and increases
forecast accuracy on mostly homogeneous datasets containing multiple mea-
surements, as well as in applications where there are exogenous variables
that are strongly related to the variable(s) of interest [6]: e.g., traffic [7] or
electricity load forecasting [8].

However, training a DNN remains difficult for most TS settings [9] 1],
especially when TS are non-ergodic, heteroskedastic, non-stationary or have
high noise-to-signal ratios. Such cases are often found in financial TS. Few
DNN-based models have demonstrated consistent accuracy on such datasets
spanning multiple years for different asset classes [10]. Besides reasons asso-
ciated with concept drift [T1], the difficulties in forecasting financial TS are
also due to the fact that most DNN learning frameworks do not appear to
be adapted for this setting. Training a DNN needs a large dataset of inde-
pendent training samples that are representative of the data to infer. Aside
from applications like intra-day forecasting [12], most financial applications
rely on TS that have a relatively limited number of measurements [9]. Ad-
ditionally, historical price trajectories can be very noisy and their behaviors
exhibit complex cyclical effects [13]. As it is not possible to obtain multiple
independent realizations of a specific asset’s price fluctuation under different
circumstances for the same time period [14], the nature of financial TS nec-



essarily results in both a lack of training data and the well-known difficulty
in modeling their long-term effects [15].

This paper proposes a more effective DNN framework for forecasting mul-
tiple financial assets conjointly and enhancing the capability of the T'S model
to learn a larger set of probability distributions. The key contributions of
this paper are as follows:

1. We propose a novel attention mechanism for the Dynamic Factor Graph
(DFG) framework. This mechanism offers the capacity to consider a
variable number of past latent states over time.

2. We make use of this mechanism to optimize the order of an autoregres-
sive (AR) generative function over time. We show how such a mecha-
nism can model non-stationary distributions while keeping a constant
parameterization.

3. By incorporating the attention mechanism, we develop an energy-based
deep generative approach for modeling interactions between multiple
TS that produce multivariate forecasts. Our spatiotemporal adaptive
neural network (STANN) is able to operate under a limited data con-
straint by exploiting prior knowledge of the T'S to ”virtually” augment
its training samples and allows the discovery of interrelations between

TS.

4. We have conducted an extensive experimental evaluation showing the
effectiveness of the proposed model for forecasting 21 daily return tra-
jectories of exchange-traded funds (ETFs) and mutual funds (MFs).
We also show preliminary but promising results of the proposed model
for improving autonomous trading strategies. Of all the models pro-
posed in the last 10 years [I0], ours is, to our knowledge, the first
to outperform naive baselines in a monthly multivariate financial TS
setting.

The remainder of this paper is organized as follows: Section [2| reviews major
existing work on modeling TS in social settings and relevant notions related
to the DFG. In Section [3, we present our model and describe its training
procedure. In Section [ we present the setup of our empirical evaluation,
which extends over more than 19 years of financial market activities, and
describe our results. Section [5] presents our conclusion.



2. Related Work

2.1. Prior Work:

Different formulations [I6, [17] of DNN models have been introduced to
facilitate their application on TS data. While promising results have been
achieved recently for financial TS prediction, as in [I8], it has been pointed
out that much of the published machine learning (ML) work in the TS litera-
ture claims satisfactory accuracy without adequately comparing the methods
used against conventional methods [9] and, further, that it relies on inappro-
priate criteria [19, 20]. In fact, only a few authors, such as [21], 22], have
been able to show that their models yield better performance on multiple TS
than simple statistical models like ARIMA or even a naive forecast. Most
work uses non-scaled error metrics to assess forecast quality on multiple TS.
However, it has been known for years that comparing forecasts of multiple
TS of different scales via non-scaled metrics often leads to misleading results
[19, 20]. The myriad of proposed DNN-based models [10] applied to financial
settings and the results presented around them have raised undue expec-
tations that such methodologies provide accurate predictions at forecasting
multiple TS, while there is clearly a lack of experimental demonstration that
they outperform simple baselines in the majority of cases.

Nonetheless, large gains can still be achieved by using DNN and ML ap-
proaches. Recently, state-of-the-art accuracy was achieved at the M4 compe-
tition [23], where the top 2 entries used DNN-based or ML techniques along
with statistical models. Subsequent to these findings, the authors in [24]
were the first to show that it was possible to build a pure DNN-based model
for this task and achieve greater gains than the best competition entry [22].
Given the wide range of TS to forecastE], the top-performing models submit-
ted relied on ensemble techniques to be robust over the different types of
series.

Direct comparison between single and ensemble models is generally un-
fair, as ensemble models permit the modeling of various probability distribu-
tions using multiple T'S models and subsequently apply some form of forecast
combination by evaluating the inference capabilities of each T'S model a pos-
teriori. However, the findings from these models can be investigated with
a view to building better individual models. For instance, the DNN-based

'The M4 dataset contained 100,000 individual TS, of which approximately 25% were
financial TS of different types.



models, which performed well on this dataset [22] 24], provide insights into
techniques that can be used to improve the performance of individual mod-
els: e.g., residual connections between hidden layers, adaptive learning rate
scheduling, input preprocessing and both seasonal and trend decomposition
embedded directly in the model. Most of these techniques are "tricks” to
facilitate DNN learning. However, the idea of applying a signal decompo-
sition within a neural network is promising and several authors [24, 25| 26]
have shown its effectiveness on real-world datasets. Given the well-known
difficulty of dealing with the raw signal of financial TS, we raise the ques-
tion whether a better representation of these T'S can be learned directly by
applying such decomposition within the learned latent variables of a DFG

2.

2.2. Dynamic Factor Graph:

A DFG consists of an undirected acyclic state-space model where factors
are replicated on a fixed time interval T = {t,...,t7} to model a proba-
bility distribution. A DFG models the joint probability P(X, Z; W) of the
observable values X = {x1,...,zr} and the latent variables Z = {z, ..., 21}
given some parameterization of all factors in the graph W as in Eq.[I} Here,
% is the partition function and E(X,Z; W) x —logP(X, Z|W) + const is
the total energy of the model. The total energy of the model is the sum of
the normalized probability scalars assigned by a factor to all possible input
data points associated with it. To obtain a probability, the total energy is
normalized by .Z.

o—BE(X,Z;W) e~ BE(X,Z;W)
P(X,Z;W 1
( ) fX’ fZ’ e—BE(z',2';W) de,dZ R4 ( )
E(X,Z;W) =Y > E(A,O;F); A € Z,0, € {X, Z} (2)

teT FeF
ZwW ), Z, if F/=
E(At,Ot,F) — 67“7“07“(g( ts 9)7 t+1) 1 g 0- {d g} (3)
error(d(Zy, W), Xy) if F=d’

The energy term for a given sequence of observable values X and latent
states Z is given by Eq. [2] with the energy term of a single factor defined by
Eq. 3] Here we assume that our DFG follows a parameterization similar to
that of an HMM architecture of order 1 with two factors, i.e., .# = {g,d},



and W is the parameterization of the factor F' € .. The higher the energy
term between an input data point and its associated output data point, the
less probable it is that the value will be observed. Despite the fact that the
DFG’s edges are undirected, the energy term of each factor is not. Hence,
training a DFG for TS forecasting is similar to adjusting the parameters
of a dynamic Bayesian network (DBN) [4] where we simply need to adjust
the parameters of the factors using maximum likelihood estimation, which is
equivalent to reducing the total energy of the model.

For our particular case, where we consider an HMM under the DFG
framework, the main difference between an RNN and this particular DFG is
how the state-space component is used. However, since Eq. [1| is intractable
for continuous variables under non-Gaussian distributions, we estimate the
mode of the distribution instead by maximum a posteriori approximation [3].
Thus, an HMM-based DFG model learns the probability distribution P of a
TS using two factors replicated over time: a decoder factor and a dynamic
factor, i.e. . # = {d,g}. The decoder factor d(Z; W) is a function that
models the maximum likelihood of observing a random variable X; given
latent variable Z;:

X, =d(Z,,Wy) = argmax L(z|Z; = 2; Wy); 2 € Z,x € X (4)

with W, being the parameterization of the factor, ¢t a particular time point
and £ the likelihood function. The dynamic factor g(Z; W,) models the
maximum likelihood of observing a state given some prior state and is defined
by Eq. 9(Z; W,) models a transition probability distribution as in the
DBN framework:

Zis1 = 9(Z1, Wy) = argmzaXE(ZtH =22y = zj, 0 g = 251);
2,2j,20 € 4

Note that one must specify the order of g(Z; W) by changing its configu-
ration: Zy1 = g(Zy, ..., Zi—i; W), where k is the autoregressive (AR) order
of the process. Doing so makes the assumption that the probability distribu-
tion P models a stationary process if, for all ¢, £L(Z;11 = 2| Z1—ps = 2j) > 0
and is constant for all ¢ [} This assumption holds for both the discrete

2Here, Z;_j.+ corresponds to all Z; included between Z;_j and Z,, where t’ € T
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and the continuous case |27, 28]. When modeling P using a graphical model,
we use the notation P |= (A L B|C) [4] to indicate that P models a local
independence relation between a set of nodes A and B given C. In partic-
ular, assuming that the probability distribution models a stationary process
induces the following set of independence relations:

e The latent variable evolves in a Markovian or a semi-Markovian way:
Pl (Zis1 L Zow—1-5|Z1-1:t) (6)

e The observation variables at time t are conditionally independent of
the state sequence given the latest k + 1 state variables at time ¢t [4]:

P ): (Xt A1 ZO:t—l—k> ZO:t+1:oo|Zt—k:t) (7)

This AR order is a hyperparameter that needs to be tuned carefully, since
the true probability distribution is intractable in most cases [3] and the set
of local independences cannot be verified in practice. Assuming that the AR
parameters are constant can impair training, as the resulting AR weights are
optimized to reduce the average error. This limitation is problematic if the
AR order was not selected appropriately or the training data contains mul-
tiple TS dynamics. In this work, we address these limitations by proposing
an attention mechanism that enables a DFG to select its AR order auto-
matically and adjust it over time. The stationary assumption can thus be
relaxed such that the set of interdependences in Eq[6] and Eq[7 holds but the
process order k is a function of time. This permits non-stationary probabil-
ity distributions to be modeled since £(Zi+1 = 2| Zi—k:t; W) > 0 but is not
necessarily constant over time.

3. The STANN model
3.1. Model Definition Without Including Time Series Dependencies

Given X : RT*"x™ 4 3-dimensional tensor representing a set of n TS of
length 7" and dimensionality m, we define X;; ; as the value of dimension j
for TS 7 at time t. The task of interest is to predict n multivariate TS 7
time steps ahead X : R™"*™_ We represent the spatial relationship between
series within a 3-dimensional tensor, that we denoted by W : R®*fx" where

R is the number of relations considered. Thus, our aim is to train a model
f3 RTxnxm + [Ranxn] —y RTXnXmM



TS observation:

Latent process:

Figure 1: An HMM-based DFG architecture that admits observed variables X and latent
variable Z. Both decoder (orange squares) and dynamic factors (blue squares) can be im-
plemented as parametric functions and be trained using gradient descent. Notice that the
dynamic process of the series is captured entirely in the latent space: Z;41 = g(Z;; Wy).
Thus, an HMM-based DFG is a particular case of an RNN where the hidden states are
directly learned instead of being computed explicitly by a function of past inputs.

In STANN, we use a particular formulation of the DFG. The decoder
factor d(Z; W) decodes the expected variation between X;_; and X; from
the latent factor Z;, which allows the decoder to be defined as in Eq.[8] Here
X, is the prediction computed at time .

Xt =Xy +d(Z; Wy) (8)

The dynamical module g(Z; W,) is defined by Eq. [J] and considers the
past k + 1 relevant latent factors Z; ., ie. Zy_y to Z;. d(Z; W) and
9(Z; W) is implemented as a doubly residual stacking NN, as in N-BEATS
[24]. In contrast to N-BEATS, we apply the T'S decomposition on the latent
factors rather than the raw signals.

Zt+1 = Q(Zt—k:t; Wg) <9>

3.2. Adaptive Computation Time for Autoregressive Order Selection

As mentioned in the previous section, assuming that the forecast depends
on a fixed AR order covering the past k observations is a strong assumption
that can impair model training if the autoregressive order is not selected cor-
rectly. RNNs, like the LSTM [29], consider the past k observations by main-
taining in memory a state vector that allows them to retain information as
long as required and forget it when it is no longer relevant. Unlike LSTM, we
permit k to vary adaptively without requiring the observable value as input.
To this end, we propose an adaptive attention-based mechanism to enable
DFG to be memory-augmented. Our attention mechanism is inspired by the
Adaptive Computation Time (ACT) algorithm proposed in [30], denoted as
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actm(Z; W gepm) in our model. actm(Z; W4 is a factor that generates a
probability distribution on Z that is used to select the order of the regression
in Z; 4. The probability function associated with the factor at each time
t is modeled by a parametric function fuem(Zi; Waem), with W, being
its parameterization. For ease of computation, the order selection and the
computation of Z;_ ., are performed by using the sum of a certain number
of past latent factors weighted by probability distribution function f,.., as

in Eq. [10al

Zi gt = actm(Zy, W getm) = Z 7, Lt (10a)
0<K/<k:[b(t)>€]

0 _ factm(Zt—k’a Wactm) if b(t) - factm(Zt—k’7 Wactm) > €
Ztik/ bcost lf b(t) - factm(Zt—k:’) Wactm) S €

Specifically, actm(Z; W) is implemented with two budgets b(t) =
{btine = t,bcoss = 1}: one to keep account of available past time steps and
one to track the cost of considering a latent factor. We start with the current
latent state factor Z; and consider whether to include Z;_ for ¥ =0, 1,2, ....
Each time we consider a latent factor Z;,_,,, we reduce our budget biine by
1 and beost by ¥z, |, = factm(Zi—t, Waetm), the latter being bounded within
10,1]. If a budget goes below ¢, i.e., either beosy < K Or byine = 0, We stop
considering any more latent factors and attribute the remaining cost budget
to the last factor considered. k € R* is a small constant (0.01 for the
experiments in this paper), whose purpose is to allow the selection of an
AR(1) process.

Hence Eq. [9] can be reformulated as Eq. [11]

(10b)

Zt—f—l - g(Zt—k::t;WgaWactm) (11)

We can interpret actm(Z; Woum)’'s objective as evaluating the quality of
each past latent factor and assigning the appropriate autoregressive weight
at times ¢t — k' that maximizes the log likelihood of the generative process
modeled by Eq. @ Since actm(Z; W getm) uses byigne to determine how many
past steps are available, we can theoretically account for all previous learned
factors if ZZ:O factm(Zi—k, Waum) < 1 — k. Note that the imposed budget
restricts each autoregressive weight to be between 0 and 1, with the sums
of all the weights being equal to 1. We apply this mechanism solely within
9(Z; W,) to facilitate the training model, but the approach could also be

9



extended to d(Z;Wy). From now on, then, we will simplify our notation
by considering that W, also includes the ACTM parameters. The attention
mechanism is summarized in Figure [2| and can be designed as any config-
uration of a feedforward network with a sigmoid activation function. An
illustration of our model with ACTM is presented in Fig.

®
9 o9 @/@

P
0 _
O]
i1 Zy_

2

Figure 2: Tllustration of the proposed attention mechanism. For illustration purposes, b
includes both byipe and beost, and o denotes the AR weight produced by actm(Z;—_;). The
drawing was adapted from [31].

TS observation:

Latent process:

Figure 3: Illustration of our model. The dotted lines at the bottom of the graph represent
the possible relations between variables and the dynamic factors that actm(Z; W getm ) can
consider. For illustration purposes, actm(Z; W e, ) and g(Z; W) are represented by the
same factor (blue square in this figure).

The training procedure consists of minimizing the following bi-objectives
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loss function ((12)):

T-1
1
Loss(d,g, Z) =+ > A(Xpoy + d(Z Wa), X,) (12a)
t=1
1 T-1
+ A ;HZM — 9(Ziot; W) | (12b)

The first term ((12a)) measures the ability of the model to reconstruct X,
from Z;. The second term measures the system’s capacity to capture
the dynamicity of the equation by its ability to link states of Z in sequential
order. A is a loss function that measures the difference between the prediction
X, and the ground truth X;. The second term in Eq. forces the model to
learn latent factors Z,;, that are as close as possible to g(Z;—j.t, W), with
the ideal case being a solution where Z; 1 = g(Zi_k+, W,). However, this
solution is not valid for the first term in Eq. where the ideal case is a
solution for which X1 = d(Z;_j.t, W4). To balance the relative importance
of the two terms, the hyperparameter \ is introduced to reduce or increase
the importance of the second term relative to the first term in Eq. [[2a
Training the model using Eq. can be accomplished using any expectation-
minimization-based approach [2] or an end-to-end [32] approach that trains
the three factors conjointly.

3.3. Model Definition Including Time Series Dependencies

Let us now introduce the way interrelations between TS are captured. As
pointed out in [33], multiple types of relations between financial T'S have been
uncovered. To test whether this prior knowledge has predictive capability,
we propose that the relationships between the dynamic processes of multiple
TS be given as additional prior inputs W € R?***" to the model, as in [34].
We will first formalize how relationships between series are incorporated into
the model and how this allows us, ”virtually”, to have a high number of
training samples. Then, we will describe two extensions of this approach.
The first extension allows the strength of these relations to be weighted, and
the second allows the model to learn these relations directly without any
prior information.

3In our experiments, A was fixed trough a hyperparameter optimization that seach the
optimal value in the following interval [0.01 and 1.0]
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Relationships between the dynamic processes of n TS are incorporated
via a tensor W € RTRX”, where R is the number of relation types given
as prior.In the following discussion, each sequence is indexed by X, ;, while
the corresponding hidden state is represented by Z,;. X, correspond to the
particular observation of the 7™ TS at time ¢ and Z;; is its corresponding
hidden state. We formulate that, at time ¢, Z;;,; depends on its own latent
representation (intradependency) and on the representations of other series
(interdependency).

Intradependency is modeled through a linear mapping ©© € R™". In-
terdependency is modeled with one transition matrix ©) € R™ " for each
possible type of relation » € R. ©() learns the relationship between each
TS by applying a linear combination between neighboring TS and we denote

@Z(»T) as the linear combination learned for relation r of the 7™ series. We

denote all the transition matrices by O € RE*m*m and W as the relation
given as prior between the i series and other neighboring TS. To evaluate
Zyi1, we compute the matrix product between the latent space Z; and its
dependencies (0, @) as in Eq. [13] The decoder follows along, using Z; ;
as inputs, and computes the expected variation as in Eq. . hg, hq are the

respective activation functions of g(Z; W) and d(Z; W,).

Zt+1,i = Q(thk:m'; ng @)

= hg(actmg(Zt@Z(»O) - Z wz,.0); W,) (13)
reR
Xiyri=Xpi +d(Zii; Wa) = ha(Z,:; W) (14)

Note that Z, is shared among all series with respect to g(Z; W), but the
representation of each series is disentangled explicitly by means of W i.e.,
d(Z; W) takes as input Z;;, the hidden factor of the i TS. Doing this has
two advantages: (1) g(Z; W) can forecast Z;,; with fewer regressors. (2) It
"virtually” increases the number of training samples, as we can use time and
positional coordinates to make T' x n fixed-size training samples instead of
handling TS as sequential data. With respect to each disentangled latent
state, the correlation existing between the latent states of two TS would
indicate that our model estimates that the TS follows similar trajectories
despite W specifying that they are or are not correlated which is possible in
part due to @),
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3.4. Model FExtensions

The two possible extensions proposed in [34] can also be applied to our
model. We summarize the extensions here; readers are invited to refer to
the original paper [34] for a more detailed explanation. The first extension,
denoted by STANN-R, consists of adding a learned matrix of weights I'" &€
R?*™ that can reduce the strength of relations given as prior. The second
extension, denoted by STANN-D, consists of replacing W with I" such that the
model learns both the relational structure and the relation weights within I'.
Applying the STANN-R or STANN-D extension formalizes Eq. [13]as in Eq. [L5|or
Eq. [16] respectively, where ® signifies element-wise multiplication between
two matrices:

Ziv1i = 9(Zi—1:ti; Wy, ©) _g(aCtmg(Zt@(o +Z " ®W )Zt@gr))
reER

(15)

Zt+1,i = (Zt ktqu7 @) = g(actmg Zt _|_ ZF T)@(r (16)

re€R

The optimization problem can thus be adjusted for I', depending on
whether the dynamic function is specified by Eq. [I5] or Eq. [I6] and can
be written as Eq. . IT| is a [; regularizing term intended to sparsify I'");
v is a hyperparameter set to tune this term; and A\ is a factor set to balance
the relative importance of g(Z; W,) and d(Z i Wy).

d*g*, actm , O, I = argmln—ZA (Zy; Wy) + X1, Xy)

42T,
-1 (17)
YA e =D N2 = 9(Zikis W, O)

t=1

4. Experiments

4.1. Datasets and Experimentation Procedure

We report here the results of an experimental evaluation of our forecasting
methods on two datasets: ¥, = Fasttrack and %, = Fasttrack Extended.
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Table 1: Datasets for experimental evaluation

Dataset T n Data type Time horizon T # Runs per model
1 2186 10 daily adj. close 1996/07/08 - 2007/08/22 21 100
Dy 2000 69 daily adj. close 2011/05/31 - 2019/05/10 21 54

T is the total number of time points, n the number of series, 7 the number
of steps ahead to forecast and # Runs the total number of evaluation runs
made. For all datasets, we considered only the closing price (m = 1).

The two datasets, summarized in Table[l], were obtained through FastTrackf]
They were selected for restraining the number of training samples and as rep-
resenting respectively a low-data setting and a medium-data setting. Both
datasets contain daily closing prices of U.S. MFs and ETFs traded on U.S.
financial markets, each covering different types of asset classes including
stocks, bonds, commodities, currencies and market indexes, or a proxy for a
market index. Taken in combination, they cover 19 years of financial mar-
ket activities and provide an overall view of the whole financial ecosystem.
Each TS of these datasets represents the aggregation of multiple individual
financial assets. In some of these TS, like VFICX, the aggregation of these
individual TS is subject to vary over time with respect to management ac-
tivities associated with these funds.

H

% 1 |Tr4i — Tyl
MASE(X,X) == T (18)
H i=1 T+11L1—s Zj:erl’xj — Tjm]
H —
1 \/|$T+i — ZTpy)?
THEILU( X X)=— - (19)
H zzzl: T+}{—s Zf;lj-l [T yi — Ty

()1088 shape (X, X) 4 (1 — @)1088ime (X, X)

(0)1088shape( X', X) + (1 — @)108Sime (X', X)
(20)

SDILATE(X,X,X') =

T

~ 1 ) ~ .
MDA(X,X) = i sign( X — Xi—1) = sign(Xpppi — Xi-1) (21)
i=0

‘https://investorsfasttrack.com
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To train each model, we carried out an evaluation on a rolling-forecasting-
origin cross-validation, setting the number of time steps 7 to 21 days for simu-
lating forecasting on a monthly basis. All models were trained on normalized
TS using the interquartile range method. Produced forecasts were unscaled
back to the original T'S scales to measure the forecast’s error. All DNN-based
models were trained using stochastic gradient descent (SGD) with Adam [35]
and a learning rate scheduler [36]. The number of epochs, learning rate and
other model hyperparameters, such as the optimal training window or the
number of hidden layers and the number of hidden neurons for DNN-based
models, were determined by a Bayesian hyperparameter search [37].

4.2. Time series Models

For fairness of comparison, we considered only models that can forecast
multivariate TS directly, with the exception of two baseline models. The
models used are as follows:

1. Naive: A simple heuristic that assumes the 7 future steps will be the
same as the last previously observed.

2. AR: A classical univariate autoregressive process in which each TS is
forecasted individually. The prediction is a linear function of past [
lags.

3. ARIMA: An autoregressive integrated moving average model that
forecasts each TS individually. Implementation of ARIMA was done
with [38] to automatize the selection of the best parameterization over
the training set.

4. LSTM: A long short-term memory model that forecasts 7 steps ahead
in an iterative fashion [29]. LSTM with hidden layers and the number
of hidden neurons were considered.

5. LSTM-A: The same model as LSTM but with an added softmax at-
tention layer to weight the importance of each past latent state for
forecasting the next step-ahead.

6. WaveNet: A convolutional neural network using dilated causal con-
volutions [39].
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7. 1-BEATS: A member of the neural basis expansion analysis for time
series forecasting ensemble model presented in [24].

8. STNN: The closest model to ours. STNN can be considered as a
particular case of our model, i.e., our model with & = 1. The two
extensions of STNN (STNN-R and STNN-D) [34] were also considered.
The Pearson correlations between TS were computed over the training
set to define W. We used the same training strategy as for STANN,
i.e., modeling the variation only and training the model end-to-end to
establish a fair comparison between model architectures.

9. STANN: The model proposed in this paper. The two extensions pre-
sented in Section were also considered. The extensions expressed

in Eq.[15] and Eq. [16] are denoted by STANN-R and STANN-D, respec-
tively. Pearson correlation was used to define W.

Table 2: Average forecasting performance of tested models on the Fasttrack dataset

| FAST TRACK
Model: | MASE THEILU sDILATE MDA
Naive 1.0000 = 0.0000 1.0000 = 0.0000 1.0000 = 0.0000 0.0180 % 0.0149****
AR 1.0707 £ 0.1517***  1.0757 & 0.1577***  1.1819 =+ 0.3560***  0.5085 =+ 0.1469***
ARIMA 1.0030 =+ 0.1205¢ 1.0133 £ 0.1204¢ 1.0412 + 0.2457* 0.5817 4+ 0.1834
LSTM 1.3399 + 0.6020****  1.3405 + 0.6332°**  2.1941 4 2.5503***  (.4861 =+ 0.1624***
LSTM-A | 1.5708 & 0.6607*** 1.5088 & 0.6261*** 2.6648 & 2.4887*** (0.4355 £ 0.1642***
WaveNet | 1.5936 + 0.7655****  1.6093 4 0.8133****  3.2449 4 3.7111*** 0.4844 4 0.1606****
1-BEATS | 2.9653 + 1.3327***  2.8485 + 1.3271*** 0.8578 + 9.2178***  (.4307 + 0.1490****
STNN 0.9852 + 0.0693  0.9920 + 0.0756  0.9897 + 0.1484  0.5942 + 0.1816
STNN-R | 0.9860 +0.0785  0.9900 & 0.0791* 0.9863 + 0.1431* 0.5450 + 0.1965*
STNN-D | 1.08124 0.2957**  1.0808 & 0.2765*  1.2439 & 0.8131**  0.5585 =+ 0.1533"
STANN 0.9792 4+ 0.1045 0.9828 +0.1114 0.9783+0.2174  0.5363 + 0.1914
STANN-R | 0.9806 = 0.0784  0.9863 +0.0804 0.9793 +0.1562  0.5864 + 0.1873
STANN-D | 0.9864 + 0.0381  0.9870 + 0.0374  0.9756 + 0.0707  0.5642 + 0.1956!

Averaged forecasting results of the 21-day multivariate trajectory forecasts
for both datasets. Boldface indicates the best methods who was determined
by the Wilcoxon signed-rank test with significance level of p — value < 0.10.
We also indicate the statistical significance of the difference from the best-
performing model on the associated metric (t: p< 0.10; *: p< 0.05; **:
p<0.01; ***: p<0.001; ****: p<0.0001). Underlining is used to indicate the
best-performing model, comparing the significance level on all metrics.
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Table 3: Average forecasting performance of tested models on the Fasttrack extended

datasets
‘ FAST TRACK EXTENDED

Model: ‘ MASE THEILU sDILATE MDA
Naive 1.0000 £ 0.0000 1.0000 +£ 0.0000 1.0000 £ 0.0000 0.0128 % 0.0082****
AR 1.0337 £ 0.0844**** 1.0306 4 0.1033***  1.0723 4+ 0.2109***  0.4788 % 0.0955*
ARIMA 1.0011 £ 0.0945* 1.0008 £ 0.1193¢ 1.0156 £ 0.2373¢ 0.2748 + 0.1222****
LSTM 1.2543 £ 0.3020"**  1.2311 4 0.3002****  1.6041 4 0.8031****  0.4821 + 0.1426"
LSTM-A 1.3940 £ 0.3900****  1.3410  0.3713***  1.9345 + 1.1580**** 0.4841 + 0.1357*
WaveNet 1.3988 £ 0.5445****  1.4071 4 0.5930****  2.3042 4 2.4721*** 0.4864 + 0.1472*
1-BEATS | 2.9836 £ 1.1605*** 2.7788 4+ 1.1065****  8.7333 £ 6.5840™**  0.4565 % 0.1449****
STNN 1.0020 + 0.1536 0.9959 £+ 0.1591 1.0165 + 0.3354 0.5259 £+ 0.1822
STNN-R 1.0122 +0.1707 1.0047 + 0.1698 1.0369 + 0.3687 0.5241 4+ 0.1693
STNN-D 0.9814 +0.1147 0.9791 £+ 0.1255 0.9743 £+ 0.2495 0.5401 £+ 0.2052
STANN 0.9832 +0.1023 0.9814 4+ 0.1084 0.9750 4 0.2148 0.5360 £ 0.2030
STANN-R | 0.9836 + 0.1026 0.9816 +0.1098 0.9755 +0.2189 0.5401 + 0.2051
STANN-D | 0.9795 + 0.1016 0.9785 +0.1096 0.9694 + 0.2176 0.5406 + 0.2055

Averaged forecasting results of the 21 days multivariate trajectory forecasts.
We highlight the best methods in bold.

4.3. Forecasting Performance

Our experimental results are summarized in Table 2] and Table [3| First,
we analyze the average performance of all the models and the statistical
significance of the results obtained. Our model outperforms the DNN-based
and statistical baselines in terms of all metrics on both datasets. The values
of these metrics also indicate the superiority of the training framework of
STNN and STANN as compared to the other models evaluated. By using
the proposed attention mechanism and the TS decomposition approach of
N-BEATS, STANN improves on the performance of its base model (STNN).

The augmentation trick used in the STNN and STANN models, pre-
sented in Eq. [[3] and Eq. [I4] is the largest contributing factor behind these
results. By exploiting prior knowledge on the relation of these TS, STANN
and STNN enhance their ability to forecast T'S by ”virtually” increasing the
number of training samples despite using a shared latent state like LSTM
and Wavenet. These results are very promising, considering that (1) our
approach achieved such results using a relatively small number of TS; (2) it
was trained solely using historical prices. It is not surprising that DNN-based
models (WAVENET, LSTM, LSTM-A, 1-BEATS) underperform compared
to statistical baselines when trained in this setting, given their large param-
eterization and the small number of training samples at their disposal. Our
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results show that the augmentation trick of STNN and STANN appears to be
a solution to the lack of training samples when such models are trained in a
multivariate setting. We point out that, contrary to [I8], we did not achieve
similar MASE for the one-step-ahead forecast. We observe that during model
training, we achieved similar results but the accuracy quickly dropped after
the first 5 steps ahead in the first few epochs to yield a better overall fore-
cast on the whole trajectory. Hence, there appears to be a trade-off between
short-term forecast accuracy and the longer-term forecast accuracy when
optimizing DNN-based models.

Comparison between STANN-D and STNN-D forecast errors for Fasttrack
extended dataset
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Figure 4: Concatenation of the 21 daily return forecasts of STANN-D (top) and STNN-D
(bottom). The absolute scaled error per series is presented.

We can qualitatively compare our models by plotting the absolute scaled

error of the individual point forecast (IPF), i.e., — lxg}i}iTr“i| i for all
T+H—m 2uj=m+11Tj—Tj—m
the TS forecast, and comparing where our model fails. We observe that our

approach is relatively consistent at forecasting the trajectory of each asset
(Fig. E[), but the majority of the residuals appear to occur in an epistemic
fashion, i.e., the TS forecasting difficulty varies over time. Our proposed
attention mechanism slightly increases the forecast accuracy in these episodes
of forecast instability over its base model, which explains the majority of the
additional average gain in accuracy.

By looking at the ability of the evaluated models to predict the trend
of the out-of-sample trajectory, we observe in Fig. [5| that the STANN- and
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Comparison between the evalauted models the Fasttrack extended
dataset

Figure 5: Directional accuracy for each ¢ steps ahead of the evaluated models. The darker
the region, the less precise the model is at forecasting the trend of the trajectory of this
particular asset.

STNN-based models outperform baseline models but the STANN-based mod-
els show less variance in their results when compared to the different exten-
sions of the STNN-based models. Given that these models tend to forecast
the appropriate trend more accurately, this explains why our proposed frame-
work outperforms other baseline models.

In Fig.[6] we illustrate, showing the autoregressive order of a sample of the
STANN-R model, that our model generates a dynamic process thanks to its
attention mechanism. We can see that the model oscillates between AR(1)
and AR(2) processes, although it remains more often at an AR(1) process.
Interestingly, we can identify time spans for certain assets that are dominated
by an AR(2) process and other regions dominated by an AR(1) process. This
phenomenon is similar to what regime switching (RS) models [40] enforce as
prior when modeling the T'S. Our approach differs in that we do not have
to specify the number of regimes, nor the AR order a priori. However, we
notice that the choice of hyperparameters and model architecture can lead
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Autoregressive Order of STANN
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Figure 6: In-sample autoregressive order of a random instance of the STNN-R models
taken from the Fasttrack extended evaluation. The left axis corresponds to past time
steps used to train the model, with 0™ steps being the furthest away from the prediction
date; the bottom axis shows the securities forecast. Brighter colors indicate a higher
autoregressive order for the time step in question.

to vastly different results, with instances converging to either stationary or
higher-AR-order solutions. Hence, further studies are needed to determine
how this attention mechanism permits modeling of regime switches within
its latent states.

Finally, we also performed an ablation study to show the effect that the
TS decomposition technique and the attention mechanism have on the model.
To this end, we plotted the values of MASE metrics of each step-ahead
forecast of model STNN-D and STANN-D with one of the two components
removed. The plot, presented in Fig. [T, shows the reference model (top left),
our proposed model (top right), our model without ACTM (bottom left)
and our model without the N-BEATS architecture (bottom right). The plot
shows that using the attention mechanism alone without TS decomposition
increases the overall forecast error but reduces the error propagation often
found in recursive approaches. When combined with the TS decomposition
architecture presented in [24], we observe a significant error reduction for the
last 14 days of the forecast trajectory. Regardless of the number of steps
ahead forecast, our approach is significantly better than its base model at
reducing IPF ****.

20



Individual step-ahead MASE distribution of our approach on the
Fasttrack extended dataset.

STNN-D STANN-D
3.0 3.0

25 25
2.0 20
215

| E
TR W _.,..||||||

step-ahead forecast step-ahead forecast

STNN-D (beats) STANN-D (actm only)

20 ZOII I
||||||||

0.0
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
step-ahead forecast step-ahead forecast

Figure 7: An ablation study of STANN-D is presented. The median absolute scaled error
for STANN-D is equal to 0.9671 and for STNN-D, to 0.9810

4.4. Added Value for Autonomous Decision Making

We conducted some preliminary studies to demonstrate the utility of
the proposed model to help autonomous decision making. Specifically, we
show how the improved forecasting accuracy achieved by our model helps
autonomous trading strategies enhance their performance. The challenges
of this question are threefold: (1) T'S models are not decision systems in
themselves. (2) We must rely on a trading strategy as a proxy to compare
forecasting models. Given the myriad of strategies that exist, selecting one
trading strategy over another is highly subjective and may lead to ambiguous
results [41]. (3) Each trading strategy has its own sensitivity to its input data.
This last point is particularly important, as different trading strategies will
produce different allocations depending on the forecast we provide. Conse-
quently, the sensitivity of trading strategies plays a large role in determining
the excess return. For instance, the traditional mean/variance framework
[42] is known to produce mixed results when exposed to noisy forecasts [43],
whereas DNN-based models like [44], [45, 46] can be heavily influenced by
hyperparameters and model architecture. Although there is a correlation be-
tween having good estimates of the returns and the performance of a trading
strategy, past profits can vanish very rapidly if the trading strategy makes
a bad allocation at a bad time. Even if a TS model’s accuracy is good on
average, it suffices for the TS forecast to be bad at the wrong moment to
lose profits from past months. It is necessary to point out that an extensive
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study of these issues is beyond the scope of this paper.

Performance of various portfolio strategies built on the evaluated models

| FAST TRACK

FAST TRACK EXTENDED

Model: ‘ Sharpe Max Drawdown mean return profit ‘ Sharpe Max Drawdown mean return profit
BL strategy
AR 0.37 —2.41% 0.34% 39.87% 0.80 —2.30% 0.24% 14.82%
ARIMA 0.47 —2.40% 0.35% 41.74% 0.97 —2.47% 0.30% 18.79%
LSTM 0.67 —1.87% 0.39% 46.71% 0.82 —2.84% 0.28% 17.27%
LSTM-A 0.49 —2.23% 0.36% 42.62% 1.13 -3.02% 0.35% 21.91%
WaveNet —0.02 —48.52% 0.32% 30.58% 0.52 —6.90% 0.27% 16.43%
1-BEATS —0.04 —39.76% 0.30% 29.46% 0.05 —10.02% 0.10% 5.19%
STNN 0.49 —2.21% 0.35% 41.95% 0.76 —2.61% 0.22% 13.51%
STNN-R 0.50 —2.21% 0.35% 42.16% 1.11 —4.13% 0.54% 35.70%
STNN-D 0.48 —2.13% 0.35% 41.72% 0.74 —2.64% 0.22% 13.52%
STANN 0.48 —2.19% 0.35% 41.70% 0.73 —2.57% 0.22% 13.26%
STANN-R 0.47 —2.20% 0.35% 41.67% 0.73 —2.67% 0.22% 13.37%
STANN-D 0.49 —2.23% 0.35% 41.92% 0.72 —2.66% 0.22% 13.22%
Optimal ‘ 3.97 -1.92% 2.79% 1436.73% ‘ 2.89 -5.30% 2.27% 263.39%
Simple strategy
AR —0.26 —20.70% 0.18% 16.60% 0.38 —16.56% 0.37% 21.59%
ARIMA 0.47 —11.58% 0.50% 62.22% 0.51 —11.85% 0.40% 24.63%
LSTM 0.15 —29.69% 0.44% 47.40% 0.76 —21.08% 0.58% 37.39%
LSTM-A —0.06 —35.53% 0.28% 27.54% 0.53 —17.18% 0.52% 31.51%
WaveNet —0.02 —48.52% 0.32% 30.58% 0.41 —15.28% 0.35% 20.35%
1-BEATS —0.04 —39.76% 0.30% 29.46% 0.21 —17.41% 0.31% 16.18%
STNN 0.49 —11.47% 0.51% 63.55% 0.40 —15.64% 0.37% 21.52%
STNN-R 0.54 —12.26% 0.50% 62.24% 0.70 -0.38% 0.18% 10.95%
STNN-D 0.75 -6.43% 0.61% 81.36% 0.48 -10.73% 0.41% 24.70%
STANN 0.52 —19.59% 0.56% 70.75% 0.50 -10.86% 0.43% 25.82%
STANN-R 0.45 —12.07% 0.49% 60.64% 0.48 -10.73% 0.41% 24.70%
STANN-D | 0.66 -8.99% 0.55% 71.13% 0.48 -10.73% 0.41% 24.64%
Equal Weight ‘ 0.47 —11.58% 0.50% 62.22% ‘ 0.48 —10.73% 0.41% 24.70%

Table 4: Portfolio performance metrics of the three types of strategy, evaluated on the
same time horizon utilized in Table [1} The best strategy is highlighted in bold.

In our experiments, we studied and observed relations between the ac-
curacy of the TS forecast and the excess return of a strategy. Results for
various financial metrics of two common strategies are presented in Table []
on both datasets. Here, we include the annualized Sharpe ratio sharpe =
E[T’"’”g ;lo:;:;okf reed) /P , where 7pop¢ forio 1s the return of the portfolio, 7pisk free
is the return of a risk-free strategy, oportforio is the standard deviation of the
excess return of the portfolio and . = 7/252 is an annualization factor, with
252 being the average number of active market days per year. We also include
the maximum drawdown, which is the maximum loss observed from a peak
to a trough of a portfolio; the mean return per trade and the total profit after
the observation periods. We also present the excess return graph of different
portfolio strategies built on the evaluated models for the FASTTRACK dataset

in Figs. [ [0 and [0}
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Portfolio excess returns on the FASTRACK dataset
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Figure 8: Portfolio performances based upon alternative statistical baselines (left) and
RNN-based models (right)

Portfolio excess returns on the FASTRACK dataset
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Figure 9: Portfolio performances based on alternative DNN models (left) and STNN-based
models (right)
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We used two proxy trading strategies to carry out our evaluation.

(1) Black-Litterman (BL) strategy: The first is a simple, efficient frontier
optimization trading strategy [42] based on the BL allocation model
[47], in which we maximized the Sharpe ratio. The expected returns
are determined by the TS forecasts and implied market returns and the
estimated risk was computed respectively by the in-sample returns and
covariance Pl

(2) Simple: a simple trading strategy where one invests equally in each of
the securities that the TS model predicted would increase in price. If
the trend signal is negative and assets were allocated, we consider the
forecast as a ”sell” signal. A positive forecast trend is interpreted as a
"buy” signal. The allocation weights were normalized according to the
strength of the trend signal using a softmax function.

We compare these strategies with the same ”optimal” BL strategy where the
expected returns and covariance matrix are known in advance to simulate
how a perfect TS model would have performed for this strategy. We also
include an equal-weight portfolio where we invest in each asset equally.
Allocations of assets were reconsidered on a 21-day basis to simulate how
an autonomous trading strategy would change its portfolio allocation over
time depending on the financial context. We used a $10,000 initial portfolio
value and bought whole security shares, with the leftover money being at
a risk-free rate determined by the 30-day U.S. Treasury bill rate. For the
FASTTRACK dataset, we used the U.S. 3-Month Treasury rate rather than
the 1-month rate for the risk-free strategy, given that no data for the U.S.
1-Month Treasury rate before 2001-07-31 is available from the public and
proprietary data sources at our disposal. Transaction fees were assumed to
be null and dividends were accounted for within the adjusted closing price.
It can be seen that perfect predictions yield extremely significant returns
for BL strategies on both datasets. However, although LSTM and LSTM-A
are poor forecasters with respect to all metrics, the strategy built on them

5 A long-only portfolio constraint was added to ensure that the allocation weights remain
between 0 and 1. In some instances this constraint is too restrictive and the convex
optimization used in this approach fails. In such cases, we permit the optimization to
consider the short position; i.e., allocation weights remain between -1 and 1, and do not
consider the short position in our allocation.
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is among the top performers. Identifying the principal cause of this phe-
nomenon is not a trivial matter. However, efficient frontier optimization
methods are known to produce mixed results when the forecasts are too
noisy [43]. At this level of accuracy, none of the T'S models evaluated are
sufficiently robust by themselves to be considered in a BL strategy. How-
ever, we can observe that there are significant gains to be made if one could
identify the condition where a T'S forecaster helps a trading strategy, as each
strategy overperforms the baselines at certain moments.

The performance of the simple strategy shows the importance of having
a more accurate TS model for autonomous trading strategies. TS models
that forecast more accurately, like the STNN and STANN-based approaches,
are among the top performers on both datasets with respect to most met-
rics, especially when few TS are considered. When more TS are considered
(Fasttrack extended), the simple strategy is too naive to select a meaning-
ful subset of securities and will yield performance similar to an equal-weight
portfolio. However, since STNN and STANN-based models forecast the trend
more accurately, the maximum drawdowns of the simple strategy based on
these models were much smaller compared to the LSTM and LSTM-A strate-
gies, which made allocations over a smaller set of securities at a time. Hence,
a simple naive strategy can perform relatively well within a curated set of
TS using a better forecaster, but will not scale effectively when the number
of assets considered is too large.

5. Discussion

This paper proposed a new self-supervised deep generative model (STANN)
for forecasting multivariate T'S conjointly, which explicitly models the inter-
actions between TS. We introduced a novel attention-based mechanism that
enhances the capability of any RNN based on the DFG framework. We
showed how this attention-based mechanism increases the set of probability
distributions that can be modeled by permitting modeling of non-stationary
distributions. Incorporating this into our model, we presented one general
approach and two extensions for considering interrelations between TS. We
showed that when these interrelations are incorporated, we can fit these
DNN-based models even where little training data exists. Experiments were
performed on two financial datasets covering more than 19 years of market
history. Our experiments indicate that STANN provides a more effective
learning framework than either DNN-based approaches or statistical base-
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Portfolio excess returns of FASTRACK dataset
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Figure 10: Portfolio performance based upon STANN-based models

lines. We showed that this class of models perform wells in both low- and
medium-data settings and that our proposed attention mechanism helps im-
prove forecasting performances over its base model. Finally we illustrated
how the use of a forecaster improves autonomous trading strategies.

We would like to emphasize the limited understanding of the relation
between our model effectiveness and the selection of HPs. Indeed, a mis-
selection of HPs can have a great impact on a model’s performance, po-
tentially hindering its application at a large scale. Hence, we advocate the
pursuit of future work to enlarge our theoretical understanding of this class
of models, as well as testing to determine whether similar results can be
achieved at larger scales and for other TS settings.
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